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The generally accepted view of the fish squama only as a means */393:i

of protection from mechanical damages and parasites is poorly supported

by specific observations and experiments. It is not sufficient since

one can hardly doubt the great importance for the fish of the hydro-

dynamic qualities of its integuments. Works covering the hydrodynamic

role of the squama began to appear only recently (Walters, 1962; Aleyev, ,

1963; G. Wahlert and H. Wahlert, 1964). In this article yet another

attempt has been made to mark the way for future research in this

area. This is an attempt to draw an analogy between the fish squamosal

integument and the surfaces directly formed by the turbulent flow. Such

surfaces that have been formed by water'and air streams are widespread

in nonliving nature (Kudryashov, 1959, 1960, 1965).

The surface formed by a turbulent flow changes simultaneously and

in accordance with the turbulent perturbances of the viscous medium

flowing around it. These are the surfaces of b_nk spitsI and ridges in

river beds, sand dunes, and snow drifts on the ground, waves on the

water, clouds in the sky,etc. The water or air stream by means of

turbulent mixing tears off particles from any of these surfaces and

moves them along the boundary between two media (for example, solid

and liquid). The transfer of this suspension to a certain measure

suppresses the intensity of the turbulent impulses. This is confirmed,

in particular, by the experiments with a water stream (Vanoni, 1953;

Yufin, 1959). The suspension is settled in places with smaller impulses.

It is elevated once more or shifted in places with greater impulses,

reducing the latter. The formation of crests and valleys must act

analogously on the surfaces of wind-driven waves. In the final analysis,

the surfaces acquire a shape that guarantees the least hydro- or aero-

dynamic resistance with the given velocity and viscosity of the flow,

with the given size and specific weight of the particles. The smaller

the cohesive force between the particles, the larger the surface

that is defined hs directly formed by the water stream. The charac-

teristics of the mobile irregularities on such a surface are constant

while the listed conditions remain unchanged. The resistance to the

flow is lower, the lower the velocity and viscosity of the flow, and

Ipobochni--large accumulations of detritus that adjoin the shores of
rivers, usually in a staggered order.

*Numbers in the margins indicate_aginationin the forei_ text i



the better the size and specific weight of the particles satisfy the

force of their shifting or suspension.

The surfaces that we are discussing are called surfaces for_ed by

a flo_7 only for convenience. Actually the surface and the flow form

each other. /394

Fish (and birds) move under conditions of a turbulent flow (Shuley-

kin, 1953; Rosen, 1961; Chestnoy, 1961; Lavrent'yev, M. A. and Lav-

rent'yev M. M., 1962; Aleyev, 1963; Patrashev, 1964). The requirement

for the least resistance and the least energy outlays for movement is

paramount for them. One can therefore expect some analogy between their

integuments and the surfaces formed by turbulent flows in nonliving

nature. However, a reduction in the energy outlays for production of

particles that are moved by the flow is no less important for the

organism. It needs to be explained how far the analogy of integuments

goes. This refers in particular to fish and the analogy with the

surfaces directly formed by the turbulent flow, and by _hat means can

the loss of the aforementioned particles be prevented or reduced. Our
2

article is the first step in this direction.

Material and Technique

In order to clarify the question presented above, we should first

of all know the motion velocity of fish and obtain data that charac-

terize its body shape, the arrangement, and dimensions of the irre-

gularities on its surface that are comparable to the analogous data

for the aforementioned bodies of nonliving nature, primarily pobochni

and ridges in river beds with low turbidity.

Well-recorded specimens of fish were selected from the collections

of the Zoological Institute of the USSR Academy of Sciences. These

were specimens of fish of those species and dimensions whose greatest

motion velocity (Vmax) has been measured by instrument (Ohlmer and

Schwartzkopf, 1959; Blaxter and Dickson, 1959; Ohlmer, 1964; Radakov

and Protasov, 1964). These specimens provided a fairly broad range of

velocities. Fish were not included that had an unusually large content

_The author is very grateful for critical examination to A. N. Svetovi-
dov, G. U. Lindberg, A. P. Andriyashev, A. A. Strelkov, F. B. Mukho-
mediarov, G. Kh. Shaposhnikova, V. A. Klyukanov, A. V. Neyelov, Ye. A.
Dorofeyeva and Z. V. Krasyukova.
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water in the tissues and in whom one could expect excessive changes in

body shape when kept in preserving fluids (Barsukov and Svetovidov,

1966).

In addition, museum specimens were used of tuna and swordfish, whose

skin was set on a frame with preservation of the original body shape,

since no folds or stretches are noticeable on it.
I

A Black Sea salmon caugh_ in the Mzymta River in June 1959 was

studied in fresh form. Its maximum velocity Vma x was accepted as equal
to that of the Atlantic salmon of similar dimensions.

For the purposes indicated above, a slide gage was used to measure

the length of the fish (L) from a point,on the jaw that projects forward

the most, to the end of the vertebral column, as well as the greatest

height (2 B) and width (2 @) of the body. A flexible measuring tape

was used to measure the perimeter of the greatest fish cross section

(×) without consideration for the fin sections. A protractor measured

the angle of incline of the slanting rows of squamae to a perpendicular

lowered on the tangent to the lateral line in the area of the greatest

cross section (8), and in the middle of the distance between the

greatest cross section and the end of the vertebral column (81). The

radius of the circumference whose points coincide the best with the la-

teral surface of one of the symmetrical sides of the body (Rl.s) was
measured in the greatest body cross section. The area of the latter

(_) was computed on millimeter paper.

The greatest length of the open section of squama (Ir) , its

width (br),as well as the distance between the two neighboring sclerites

on the edge of the open section of squama (db--average of I0 measure-

ments, from the edge of the squama to the center)were measured under

a MBS-I binoculars and MIS-II microscope, MIR-Im and AM-9-2 micrometers.

The squamae were taken at half of the body height at its greatest cross

section. In the pike perch, fish with ctenoid squamae, the same i0

distances were measured between the sclerites that were arranged nearby

with rows of spinules, while in the salmon and herring whose cycloid

squama in the rear zone of the open section is devoid of sclerites_

measurements were made nearby this zone.

The measurement results are given in tables 1 and 2. The increase

in the ordinal number corresponds to the decrease in the values of

3



/395

Table I. Body_Dimensions and Motion Velocities

I 11No.in Names of fish p. _ ,, v....... _l._ _" z
order*
la Swordfish(Xiphias gladius)with sword
ib The same without sword 14.0,09,85 9,8._:I(}_,00,8 _04,5 61,9

2 Tuna (Thu'nnus thynnus) i04,(i9,85 9,a5 :Io0()9,8 304,5 6i,.q20o0 24,0 (324,0 t43,o

192,o 2:_,9 11,6 ;.,_;u] 9,6 30,9
3 Red fish (Oncorhynchus nerka) 48,, 6,7 2,7 42,4
4a Salmon, Black Sea (Salmo trutta labrax)

4b Atlantic salmon (S. salar) .0B,.5|6,0 8,0 842125,0 402,0 77,5 !_5,5 5,55 t,7 32ol 9,9 22,0 24,3
5 Sea-trout (S. trutta) 38,(I5,3 1,65 3flo 9,4 20,4 23,4

6 Crucian carp (Carassius auratus) I3,n 2,1;51,3 16(.)3,3 8,6 12,7S,,5 1,1 0,45 75 1,6 t,2 5,1
7 Baltic sprat (Sprattus sprattus balticus) 37,5 4,29 2,2 180 5,3 23,4 20,9

8 Pike perch {Lncloperca lucioperca)
9 Haddock (Melanogrammus aeglefinus) ,25,0 2,75 1,45 li0 3,3 O,O 13,5

i0 Herring, Atlantic (Clupea harengus , 30,0 :_,5I1,9 20o 4,2 16,5 17,2

harengus) 12,0 1,75 0,9 7{} 2,t 3,8 8,6
23,,}5,0 1,5 9(; 9,{} 16,6 22,0

ii Rainbow trout (Salmo irideus) 7,8 1,75 0,75 70 2,4 3,1 8,2
12 Bream (Abramis brama)

13 Crucian carp (Carassius auratus)

The studied fish are given by these same numbers in the figures and

in tables 2,3,4,5.
**

L--length of fish body to end of vertebral column, cm; B--half of the
greatest fish body height, cm; 0--half of the greatest fish body

width, cm; Vmax--greatest motion velocity of fish, cm/s; Rl.s--

greatest radius of circumference on lateral surface on fish _ody cross
section, cm; a--greatest area of fish body cross section, cm_; x--greatest
wetted perimeter in fish body cross section, cm; only half of the

height B and half of the greatest body width 0 are taken for convenience
to compare the fish with formations formed by the turbulent flow in

river beds; the possibility is not excluded that the given motion velo-
city is not actually the maximum in all fish, and this of course, makes
our conclusions only approximate.

the dynamic and kinematic characteristics of the fish. /396

Similarit_ between Irregularities of Squamosal Integument and Irreg_u£

I_0_ities 9_ Surfaces Formed _V____ River _!,__.
The squama is arranged on the fish body in an order that is close

to a staggered pattern. It forms transverse, longitudinal and oblique

rows. The regularity of these rows is often disrupted and the oblique

rows are preserved the best. Rows of irregularities (chains of

ridges) in river beds, naturally are less regular, but there is a

similar law in action here.

The arrangement of squamae on the fish body (fig. i) is described

fairly accurately by the equation of cycloid evolute:

4



Table 2. Angles of Incline of Oblique Rows of Squamae, Dimensions of
Open Section of Squamulae and Distances between Sclerites

number inorder* l:' I f_' '_ I,_ 1 Jb

la ..... no, squamae
Ib ..... _> _ I
2 ' '2'2 25 0,?,8 ) 0,116_! I),nn24

4a 25 2B O, _2() n, _68 (_,n(}:',8

5 32 3{1 0,29) I),29(} I),( )03G
6 21 25 (),4,1(1 B ,8UU 0 ,flu342
7 24,5 31l O, 1BO 11,28!) (.),1)1)31)5
8 23 23,5 {1,22n o ,520 0,0036
9 30 4t O, 151) O, t50 0,00267

0 ,,,.0 , {1,5(1{'1 {) ,{)09'{2li) 27,5 3{1 "') -,
1 l 25 26 (}J )7(_ () ,(180 0,00257
12 27 30 0,4(){) 1},750 0,00421
t:_ 21 25 0,2_}0 0,400 0,00655

For the names of fish see these numbers in table I.

B,Bl--angles of incline of oblique rows of squamae to perpendicular
of tangential lateral line, in degrees (B--in the arrangement of the
greatest cross section; B1--in middle of distance between greatest
cross section and end of _ertebral column); 1 --length o£ open section• . r
of squamulae on half of body helght in greatest cross section of fish,

cm; db--distance between sclerites on end of open section of squamulae
in greatest cross section of fish on half of body height, cm.

X_= a (l I--si. t) f
Y_...... a(1-- c{_st). (1)

where Yl--ordinate that coincides with direction of fish lateral line,

t--angle of rotation of circumference. With the least approximation,

this equation also describes the irregularities that are directly

formed in the river beds by the turbulent flow. In this case the Y1

ordinate coincides with the direction of the stream of greatest velocity.

The hypothesis that follows from h_re on finding the lateral line

on the torso and tail usually at the sites of the greatest vglocit_ of

the stream flowing around the fish is supported by the followingcon-

sideration. As is known, the external perturbances (including those

acting on the lateral line of the fish) generate or intensify the /3971

eddies in the boundary layer to a greater extent, the higher the velocity

of the stream flowing around the body (Shlikhting, 1962). Consequently,

these eddies must increase the sensitivity of the lateral line to

oscillations and currents in water that are coming from the outside to
5



.plan

.

_.4 o

0 ©

_-4 -.J
cycloid evolute

q - / '

Figure I. Plan of Integument Made of Squamae Lying on Each Other
The plus sign designates possible sites of elevation of the squama; the
minus sign designates the sites of lowering. The arrows indicate a
shift in the turbulent zone from the valley of one wave to the valley
of another.

a stronger degree the closer it is located to the sites where the flow

velocity is the greatest.

The angle of incline of the oblique rows of squama to the perpen-

dicular of the lateral line in the studied fish in the region of their

greatest cross section equals 21'31, and averages 25° In the middle

between this section and the end of the vertebral column it equals 20-

41 and averages 26.5 ° (table 2). The chains of ridges on bank spits

formed by the turbulent flow, form an angle to the perpendicular of

the direction of the greatest velocity stream. This angle is close

in value. In the ridge this angle is also usually somewhat smaller in

the greatest section of the bar_ spits than in the middle between them

and the end of the ba_iispits (Kudryashov, 1959).

The squamae carry concentric elevations, sclerites. The distance

between them on the open section of the squama, judging from everything,

characterizes the diameter of the turbulent formations in the boundary

6



laye r , like the irregularities on the surface of the ridges in river

beds. It should be assumed that the elastic epithelium is deflected

under the influence of turbulent formations, thus forming valleys

between the sclerites. In such a case, the value db (table 2) de-

termines the measure of irregularity, i.e., the energy of the turbu-

lent formations, while the ratios
l

21r/d b and 2br/d b

are the ratios of energy for the structural formations in the boundary

layer. These ratios are associated with the dynamic and kinematic

characteristics of fish, in particular,'the Froude and Reynolds numbers.

One can adopt as the specific kinetic energy of fish the ratio of

the square of the greatest velocity to the doubled acceleration of the

gravity force V2max/2q expressed in centimeters of water column. This

is in accordance with other phenomena in hydrodynamics (Patrashev,1953).

For simplification of the problem, we will consider that the fish

move at the same depth which is sufficient for wave resistance to be

missing, but which is not far from the water surface. By analogy

with other phenomena in hydrodynamics and hydraulics, in particular,

the movement of a stream in an open alluvial bed directly formed by

the turbulent flow, we can adopt as the _otential energy the product

of the specific weight of water y times half of the thickness of the

zone of displacement of the liquid by the fish body, i.e., y.0.

The sum of kinetic and potential energy, the so-called complete

specific energy, is also expressed in centimeters of water column.

The ratio of specific kinetic energy to the specific potential

in hydraulics of open beds is called the Bussinesk number, while their

doubled ratio is called Froude's number (Makkaveyev and Konovalov,

1939). Froude's number expresses well the essence of the phenomenon

only in calm pattern conditions, when it is less than or equal to I,

i.e., on the condition that the kinetic energy as compared to the

i_ potential is small. In our case where Froude's number is greater than

I, one should look at the ratio of specific kinetic energy to the

complete kinetic energy e. Here • _'(dV/de) is the tangential stress

between the stream layers.

If one examines the product of the specific weight of water times

?



Table 3. Relative Dimensions of Body, Squama and Index of Maneuver-
ability index of

relative maneu-
hydralic

elongationof body--
, radius]-ver_i_ l.bility 2.l,. _._,

_ I I. 1. 7T ' " '1 _ ,_--7-in order 77" T ,,,.,. _ :.:r_._.,, +

•la 15,t3 '15,13 15,13 1,(10 4,92 30,3 -- --
] b 1_),56 l_i,56 10,56 1 ,_)0 4,92 21,2 .... I
2 8,()4 8,88 8,()0 t ,10 11,35 t6,9 317,0 550,0
3 7,10 .17,76 4,98 2,48 t-,37 35,0 159,6 202,6
4a; 6,(12 12,()5 3,_(i 2,1,) 5,|8 18,6 221,0 457,5
4 b 8,2o 2ti,74 4,58 3,2(; 0,93 49,1 226,6 320,0

') 95 7,3(1 23,00 4,W, .... l 0,87 43,6 133,4 IGl,O
6 4,9_) 10,00 3 ,,_(3 2,04 o ,G8 t,q ,1 257,2 468,0
7 7,72 18,88 5,42 2,44 o,24 35,4 t0,4,6 183,4
8 9,62 t7,o4 7,_8 1,95 i,t2 33,5 t22,2 289,0
9 9,il) i7,2_ 7,46 1,90 0,73 34,i 1!2,4 t12,4

I0 8,56 t5,8o 7,2_ 1,84 0,9_) 31,3 276,0 431,0
11 6,86 t3,34 5,59 t,94 0,44 27,3 54,4 62,3
12 4,7O 15,65 2,60 3,33 0,75 3i,3 t90,2 35(),0
t3 4,46 t0,40 3,26 2,33 0,38 20,5 61,0 122,2

For the names of the fish see these numbers in table I.

the complete specific energy as the complete hydrodynamic pressure,

then the ratio of kinetic energy to the complete hydrodynamic pressure

will be the specific dynamic characteristic that is inverse to Euler's

number. This characteristic cbanges from the values close to zero

for open bed processes to those that approach 1 for fish.

8

o,7,

0,4 _,5 ,!6 o,;_ o! o3 vz 1,o
2y.8_

Figure 2. Dependence of Relative Elongation of Body from One of the
Dynamic Characteristics of Fish

/398

Froude's number that was computed for the studied fish in the form

V2max/ge, shows that they all move under conditions of a turbulent

eddy flow i e. V2 V2max, • , max/g0>l. Froude's number /gL is also the
dynamic characteristic for fish movement since I.and 0 are in definite

ratios (tables 3,4 and 5). The dependence of relative elongation of

the studied fish B/L on the dynamic characteristic of their movement

V2/2gB * [where B*= /2g)+B] is expressed in the form of a curve

(figure 2). Its continuation reflects an analogous relationship in

8



the spontaneousformationsin the bed processes. It follows from here

that the dynamic characteristic for fish movement is the ratio of the

inertia forces to the gravity forces. This determines the dynamics

for the turbulent stream flowing around the fish.

The ratio of the product of the greatest fish movement velocity

times its complete specific energy to the kinematic coefficient of I

water viscosity v is taken as the kinematic characteristic of fish

movement, for example, Vmax6*/v [where 0*=(V2max/2g)+6].

The ratio of the product of the greatest velocity Vma x times the

transverse o or longitudinal L body dimension to the kinematic

coefficient of water viscosity v in hyd_omechanics is called the

Reynolds number (Karman, 1936), which is also the kinematic charac-

teristic of fish movement.

The graphic dependence of the ratios 21r/d b and 2br/d b on one of

dynamic characteristics of the studied fish (V2max/2g6*)is pre-
the

sented in figure 3. The obtained curves again represent a continuation

of the analogous curves for ridges in river beds that are directly

formed by the turbulent flow (Kudryashov,1959).

The interrelationship of the distance between the sclerites, the

length of the open section of the squama, the thickness of the fish

body and the maximum velocity of their movement is also characterized

by the relationship /399

21r/db=f(Vmax_).

With a kinematic coefficient of water viscosityo;computed at 15°,

this relationship is analogous for the msjority of studied fish (fig.

4) to the similar relationship for ridg_ in river beds (Kudryashov,

1959). With the same water temperature, the ratio of the doubled

length of the open section of the squama to the distance between the

sclerites increases as the fish velocity rises, despite the increase

in the thickness of their body. The greater the distance between

the sclerites, the more strongly this increase is pronounced.

It is apparent from here that with similar fish dimensions,

similar distance between the sclerites, and close temoeratures, with

a drop in the fish movement velocity, the dimensions of the open section

of the squama should diminish. The tench can serve as an example

9



I2t4 1

0 _* Jr" I _ _t rnnx

_7 1,0

Zj_l__ i__ rF" _s

_f/,')i.... -....
•74,,

Figure 3. Dependence of Ratio of Structural Formation Dimensions in
Boundary Layer on One of the Dynamic Characteristics of Fish

Table 4. Dynamic Characteristics
specific energy of fish, dynamic charge -

-T-':" l,teristicsrof fish _ Froude's
• cm water column

kinetic/comp_et-_e_ ' -- number

,,; , --F-- I ___:in order'|, _ ii:'""":l ::_%,,.,.0=it, . > _ ..... -,_.- iv,,,,,,,. _,-.,,,,,. _ ,,,,,. v,,,,,._ v:,,,,,.,.
• 2" B_' 2";'0 * 2_'RL._ * 2_.R*

( (ta 4590 45.qg,s:, /59:1,s5 ,'_(_ou 4594,92 l!.._93 11,909 ll,<.).fl9 ll.99,q 61,7o
ib 459_ 47dLq.S5 /_:,!)!).854_(_€_ 45!)1,92 (L!)9_)() ,,I ,999 ()q9 88,50
{ 2 2()I{)2_qi:I194)2(_61,(;(12(ll;.i 2H51,35 (},98G _99(} 1),989 (I,(.1,q521,24
; 3 127,5 l:;/,2() !311,211 I:U,13 128,87 (_,94_.) (I,978 0,930 (L988 5,31

4a 361,11 :;77,1J(I 3(;9,1H_ 3(;l,S{; 31;G,18 (},!17,7 0,!178 0,988 t),985 7,48
4b 52,2 57.75 5:_,!)(I B2,12 53,1:/ (Lgq*2 H.97_/ 11.8',tl 11.982 2,29

, (") 2,415 45,8:, 51,1.5 47,5O 55.25 4G,72 (L_9,'-; _,9(H; _ 8',2 O,.')S.
6 14,5s 1-,':' 15,88 17,92 15,26 iI,S,_l'_ iI..qlg 1L815 11,956 2,2i
7 2,8111 :Lgl; 3,32 ,t,/_l "{, U) (), -"_.,21H ,g(;5 _1.I_,ll; O._22 0,67
8 t6,52 2,_,Xl 18,72 21,82 17,61 11,792t1,S,%2 II, 757 11,9:17 0,88
9 tO,€H, 12.75 11,44 1:{,:_5 Jtl,73 11.783 _1,87:! 1_,74!) H,9:h) 0,80

tO 2 .91 23,9L_ ._,,,llqO,) 21,57 21,gl; I1,853 n,915 41.87,,1 11,957 l,g6
It 2,51, 4,25 :1,4() ,{,1_ '),94 11.588 _ 7:15 _),5:{,g (LS51 0 49
J2 4,7_: .9,7(_ 6.211 J3,74 5,/_5 (1,4,q5 41,75S (), 3,_2 1L862 0,40
13 2,5{_ 4,27) 3,25 4,89 2,88 0,588 (L7118 0,511 0,868 ' 0,64

For the names of the fish see these numbers in table I.
lqoo

from the fish that we did not study. It differs little in body shape,

distance between the sclerites (Galkin, 1958) and temperature pattern

from many other carp. The not very mobile tench has very small squamae.

With a rise in water temperature, the coefficient@diminishes. With

the same body dimensions and movement velocities either the size of

the open section of the squama must increase, or the distance between

the sclerites must decrease. The increase in the length and width of

the open section of the squama in fish of similar dimensions that

I0



Table 5. Kinematic Characteristics
kinematic characteristics Reynolds number

i with water

of fish with water ,temperature temperature :-jr,'oand
I_° _ _} :-: 0.01141 c., _ ;-5 ",%== 0.011.11 c._'/$

I I Iin order* g",.x'B;" V'""r'O* Vnup:'R] _ Vmav'R* Vnutv'L Vmav'O• " = Re -- =Re '

la i,21.10 ° 1,21'109 t,21"109 t,21"t0 ° 3,92.107 2,59"t0 (1
ib 1,21.t0o 1.21.10o t,21.t09 t,21.10_ 2,74.i0 _ 2,59.108
2 3,62.t08 3,64.10s 3,62.10s 3,(;t.t0 s 3,37.i0¢ 3,79.106
3 5,88. ll)_ 5,72.10_ 6,02. t0_ 5,65. I0_ 2, t0.1()_ l, 183. iO5
4a 2,78.107 2,72.t{) 7 2,(_9.10_ 2,70.10_ 7,12.10 _ 5,9t-t0 s
4 b t,fi2.10_ 1,52.10_ t,75. 106 t,50. lt)_ t,28.t06 4,76. tO4
5 t,35.10_ 1,25.10 n 1,46. t0_ 1,23.10_ t,O0.10a 4,33.i04
6 2,54.'10_ 2,36.10._ 2,6(i.il)5 2, 27.i(15 1,93.i05 1,925.10 a
7 2,(;t. 10'_ 2,i7.t04 2,92. lOa 2,Off. tO.z 5,60.104 2,95. i0 a
8 3,2.q.10_ 2,96.10_ 3,45.t() 5 2,78. t0 ._ 5,92.105 3,47.104
9 1,56. I0._ 1,40.10._ 1,(14.10_ 1,:_2.1_)_ 3,08.1(1_ i,78.t0_

10 4, 20.1()_ 3,91. lOZ 4,32.10,_ :k75.1_) ._ 5,27.10_ 3,33.10_
tl 2,61.t0_ 2,09.1!)_ 2,85.10_ t,80.t0_ 7 37. 104 5,52,10 a
12 8,20. iO_ 5,23. 104 i, 16. lOa 4,60. iO4 1,98.i0a i,262, tOa
t3 2,61.t04 2,00.t04 3,02.10_ 1,77.10_ " 4,80. i()4 4,6.i0 a

For the names of the fish see these numbers in table I.
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Figure 4. Dependence of Ratio of Structural Formation Dimensions in
the Boundary Layer on Reynolds Number

belong to the same genus that is expressed in the reduced ntm_ber of

squamae in a direction for the northern parts of the area to the

southern is a very widespread phenomenon in fish and is widely known.

The ratio of energy of the turbulent formations in the boundary

layer that is characterized by the distance between scler_tes (db) to

the complete specific energy of fish B*,e*, R*l.s(Rl.s=V2max/2g+Rl.s)

R*(R*=V2max/2g+R; the hydraulic radius R=m/× )
and that is lost / 01
over th_length of the fish L, is adopted as the indicator for stability

of the body shape:

Ii
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Figure 5. Dependence of Index of Stability of Body Shape on Dynamic
Characteristics of Fish

a, d--according to body height; b,c--according to body thickness

if _ L I! _. L 1/_.L -e-_.L
B * O* R * I,s R *

D - / a
a=A .... ,

(the coefficient g'/' characterizing the hydromechanical con-

ditions in the boundary layer is accepted as equal to 1 cm of water

12



/402
column, and therefore is not Introauced into tne formula) IKudryasnov,

1965).

The indicators for stability of the the body shape diminish with

an increase in the dynamic fish characteristics, i.e.,

I

V_ ff_. L d_,.L2 dl,.L',__:.2._= I +I- , (2)
% *+1

2gB * 13* ;_B*2 0,00_ • B

-:+1- - , (3)
2gO * 0 * 0 *'_

v'_ !/+_. L _ do.I+_ ""'"0----+++- I -- 0,47 .... , (4)
2gR * 0 * 0 *+ ,

Here n 8:+,7

(5)
IH(I.\"

L,+_,- o,o_s._+_ (6)
2g db"L_

The fastest moving fish possess the least variable body shape, while
3

the slowest moving fish have the most variable body shape (fig. 5).

The presented curves are a continuation of the curves obtained by

analogous computations for formations in river beds that are directly

formed by a turbulent flow,and their models (Kudryashov, 1960, 1965). _
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